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Abstract- The work included in present paper describes a synthetic strategy for series of new 

Tryptanthrin aminoalkyl analogues of pharmacological importance.The synthesis of 

tryptanthrin aminoalkyl derivatives have been achieved via multistep synthesis involving 

firstly creation of oxime functionality in the parent tryptanthrin structure and then alkylation 

of oxime functionality of by various alkyl amino pharmacophoric groups. Pharmacohoric 

cyclic amines were legated using potassium carbonate as base. 15 membered small library of 

Trytanthrin aminoalkyl analogues were synthesized with variation in both parent natural 

alkaloid and also in amino alkyl side chains. Synthesized compounds were fully characterized 

with 1H and 13C NMR, IR spectroscopy.  

Keywords: Antimalarial, Tryptanthrin, Natural product, Animo alkyl chains, Oximes, Natural 

product Inspired  

Introduction 

Billions of people die due to various health ailments like pathothogenic or lifestyle diseases 

every year worldwide. The development of resistance and multidrug resistances in pathogen 

make this situation more critical and crucial. So the Scientists and Chemists involved in drug 

discovery research and Medicinal Chemistry programme have tremendous burden of 

developing new therapeutics to combat this situation. As a result a number of new synthetic 

molecules are being synthesized everyday in order to obtain molecules of better biological 

property. Synthesis of hybrid molecules containing one or more pharmacophore and one 

molecule of therapeutic importance is among one of the important tool in the field of medicinal 

chemistry.[I-V] If one of the therapeutically important molecules is natural molecule then this 

synthesis is known as natural product inspired synthesis. In the present work we followed the 

same path of natural product inspired synthesis by using the beneficial properties of 

tryptanthrin nucleus.[VI-X]Tryptanthrin  is a natural alkaloid having (quinazoline 6, 12-dione) 

nucleus present in a number of plant species.[XI-XII] It is active most important component of 

a traditional Japanese herbal remedy for fungal infections. Indolo[2,1-b]-quinazoline-6,12-

dione (tryptanthrin) is a compound with a long history and is well documented to possess 
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antibacterial activityagainst variety of pathogenic bacteria, particularly the causative agent of 

tuberculosis.[XIII-XVII] Tryptanthrin and its analogues are also reported as potential 

anticancer agents against MCF-7, NCI-H460 and SF-268 human cancer cell lines.[XIX-XXII] 

Tryptanthrin have quinazolines and indole moieties in their core structure. The quinazoline 

core is a building block for approximately 150 naturally occurring alkaloids isolated from a 

number of families of plant kingdom.[XXIII-XXVII] We are working for in the field of natural 

product inspired synthesis and synthesis of small molecules of therapeutic interest[XXIX-

XXXII]. In continuation of this we have earlier reported the first green synthesis of 

Tryptanthrins.[XXXIII-XXXVI] These pharmacological properties associated with 

tryptanthrin and importance of quinazoline nucleus in medicinal chemistry prompted us to 

synthesize tryptanthrin derivatives as therapeutic agents. In this report we hypothesized to 

synthesize Tryptanthrin nucleus and ligate them with different pharmacophoric aminoalky 

groups in order to evaluate their antimalarial potential. Figure 1 demostrates few representative 

structures of biologically active naturally occuring molecules. 

 

Figure 1: Some biologically active naturally occuring molecules containing qunazoline nucleus 

4. Experimental 

All the reactions were carried out at room temperature that is 28-320C. Unless otherwise 

specified, all the reagents were purchased from Sigma-Aldrich Chemical Co, Lancaster and 

were used directly without further any purification. NMR spectra were obtained using the 

Brucker DRX 300MHz spectrometer. Chemical shifts (δ) are given in ppm relative to TMS, 

coupling constants (J) in Hz.  IR spectra were taken on VARIAN FT-IR spectrometer as KBr 

pellets (when solid). Elemental analysis was performed using a Perkin Elmer Autosystem XL 

Analyzer. Melting points were measured using a COMPLAB melting- point apparatus. 

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica 

gel plates visualized with UV light. 

Synthesis of Oxime analogues (4a-c):Tryptanthrin  derivatives (3a-c) 1Mol Eq. , 

Hydroxylamine hydrochloride 1.1 Mol Eq. and Sodium hydroxide pallets 1.5 Mol Eq. were 

reacted in 10Vol of Toluene under reluxing condition. Progress of reaction was monitored by 

Silica TLC. After completion toluene was evaporated under reduced pressure and reaction 

mixture was extracted with ethyl acetate and water. Organic layer was dried over sodium 

sulfate and purified by silica coloumn chromatography. Corresponding oxime derivative was 

isolated as light green solid in excellent yield.  
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Synthesis of Aminoalkyl Derivatives (5a-o): Oxime derivative of tryptanthrin (1 mmol) was 

taken in 100ml RB flsk and dissolve in dry acetone. Dry potassium carbonate (10 mmol) was 

added over it. Then aminoalkyl chain (1.2 mmol) was added in form of their hydrochloride 

salts. Reaction mixture was allowed to reflux on water bath upto completion of reaction. After 

completion solvent was evaporated under reduced pressure. Solid residue was poured in water 

and extracted with ethyl acetate. Organic layer was dried over sodium sulphate and 

concentrated in rotavapour. Solid residue was further purified with column chromatography. 

indolo[2,1-b]quinazoline-6,12-dione (3a) Green solid; mp= >2000C; 1H NMR (300 MHZ 

CDCl3)= 8.61 (d, 1H, J= 3.4 Hz ), 8.44 (d, 1H, J= 1.17 Hz), 8.06 (d, 1H, J= 8.01 Hz), 7.94-

7.80 (m, 3H), 7.69 (t, 1H, J= 7.08 Hz), 7.28 (t, 1H, J = 7.44 Hz); 13C NMR (75 MHZ CDCl3) 

=117.5, 120.6, 125.4, 126.3, 127.1, 129.7, 130.0, 133.2, 134.6, 145.3, 146.6, 160.4, 183.8; 

ESMS (m/z): 249 (M+H)+; Anal. Calcd for C15H8N2O2: C, 72.58; H, 3.25; N, 11.28. Found: C, 

72.55; H, 3.21; N, 11.31. 

8-chloroindolo[2,1-b]quinazoline-6,12-dione (3b) Green solid; mp= >2000C; 1H NMR (300 

MHZ CDCl3)= 8.62 (d, 1H, J= 6.8 Hz), 8.44 (d, 1H, J= 5.8 Hz), 8.06 (d, 1H, J= 7.15 Hz), 

7.90-7.88 (m, 2H), 7.76-7.68 (m, 2H); 13C NMR (75 MHZ CDCl3) = 116.5, 121.8, 123.5, 

127.6, 127.9, 128.3, 130.0, 133.9, 134.4, 141.3, 146.5, 148.6, 152.7, 161.6, 188.4; ESMS (m/z): 

283 (M+H)+; Anal. Calcd for C15H7ClN2O2: C, 63.73; H, 2.50; N, 9.91. Found: C, 63.70; H, 

2.46; N, 9.94. 

8-nitroindolo[2,1-b]quinazoline-6,12-dione (3c) Green solid; mp= >2000C; 1H NMR (300 

MHZ CDCl3)=8.74-8.72 (m, 2H), 8.54(s, 1H), 8.39 (d, 1H, J= 6.0), 7.79 (d, 2H, J= 3.14 Hz), 

7.77-7.74 (m, 1H); 13C NMR (75 MHZ CDCl3) =115.0, 120.0, 120.8, 123.8, 126.6, 127.3, 

133.4, 145.5, 147.1, 153.9, 160.6, 186.4; ESMS (m/z): 294 (M+H)+; Anal. Calcd for 

C15H7N3O4: C, 61.44; H, 2.41; N, 14.33. Found: C, 61.41; H, 2.37; N, 14.36. 

(E)-6-(hydroxyimino)indolo[2,1-b]quinazolin-12(6H)-one (4a) Green solid; mp= >2000C; 
1H NMR (300 MHZ CDCl3)= 8.59 (d, 1H, J= 4.4 Hz ), 8.42-8.29 (m, 2H), 7.89-7.80(m, 2H), 

7.68-7.48(m, 2H), 7.43 (t, 1H, J= 7.00Hz), 2.50(s, 1H); 13C NMR (75 MHZ CDCl3) =117.2, 

120.6, 124.3, 126.3, 127.1, 129.7, 130.0, 133.2, 134.6, 145.3, 146.6, 158.6, 183.8; ESMS (m/z): 

384 (M+H)+; Anal. Calcd for C19H15ClN2O2: C, 67.36; H, 4.46; N, 8.27. Found: C, 67.31; H, 

4.42; N, 8.29. 

(E)-8-chloro-6-(hydroxyimino)indolo[2,1-b]quinazolin-12(6H)-one (4b) Green solid; mp= 

>2000C; 1H NMR (300 MHZ CDCl3)= 8.60 (d, 1H, J= 7.2Hz), 8.46 (d, 1H, J= 6.4 Hz), 8.10 

(d, 1H, J= 7.1 Hz), 7.94-7.85 (m, 2H), 7.74-7.69 (m, 2H), 2.54(s, 1H); 13C NMR (75 MHZ 

CDCl3) = 117.0, 121.6, 124.1, 124.4, 127.2, 127.3, 128.1, 130.3, 133.4, 133.2, 140.6, 144.3, 

146.2, 152.4, 160.2, 188.2; ESMS (m/z): 298 (M+H)+; Anal. Calcd for C15H8ClN3O2: C, 60.52; 

H, 2.71; N, 14.12. Found: C, 60.48; H, 2.68; N, 14.16. 

(E)-6-(hydroxyimino)-8-nitroindolo[2,1-b]quinazolin-12(6H)-one (4c) Green solid; mp= 

>2000C; 1H NMR (300 MHZ CDCl3)=8.72-8.70 (m, 2H), 8.51(s, 1H), 8.34 (d, 1H, J= 7.2), 

7.79 (d, 2H, J= 3.1 Hz), 7.76-7.71 (m, 1H), 2.58(s, 1H); 13C NMR (75 MHZ CDCl3) =116.2, 

120.1, 120.8, 123.6, 126.6, 132.2, 133.4, 145.5, 147.4, 153.9, 158.8, 186.4; ESMS (m/z): 309 

(M+H)+; Anal. Calcd for C15H8N4O4: C, 58.45; H, 2.62; N, 18.18 Found: C, 58.42; H, 2.58; N, 

18.21 
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(E)-6-(2-(piperidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5a) Pale yellow 

viscous oil, 1H NMR (300 MHz, CDCl3) 8.68 (1 H, d, J = 8.0 Hz), 8.44 (1H, d, J = 7.9 Hz), 

8.35 (1H, d, J = 7.5 Hz), 7.98 (1H, d, J = 8.0 Hz), 7.88-7.75 (1 H, m), 7.64-7.52 (2 H, m), 7.38 

(1 H, t, J = 7.58 Hz), 4.76 (2 H, t, J = 7.6 Hz), 2.89 (2 H, t, J = 5.8 Hz), 2.53 (4H, t, J = 5.4 Hz), 

1.75-1.56 (m, 4H), 1.46-1.44 (2H, m); 13C NMR (75 MHZ CDCl3) = 28.6, 41.3, 64.8, 117.4, 

121.1, 124.6, 127.2, 127.1, 129.5, 130.8, 133.8, 135.7, 144.1, 146.2, 157.9, 183.6; ESMS (m/z): 

375 (M+H)+; Anal. Calcd for C22H22N4O2: C, 70.57; H, 5.92; N, 14.96. Found: C, 70.53; H, 

5.88; N, 14.97. 

(E)-6-(2-(pyrrolidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5b) Viscous 

oil; 1H NMR (300 MHz, CDCl3) 8.67 (1 H, d, J = 8.4 Hz), 8.46 (1H, d, J = 7.9 Hz), 8.45 (1H, 

d, J = 7.5 Hz), 7.99 (1H, d, J = 8.07 Hz), 7.84-7.79 (1 H, m), 7.65-7.56 (2 H, m), 7.41 (1 H, t, 

J = 7.6 Hz), 4.84 (2 H, t, J = 5.7 Hz), 3.13 (2 H, t, J = 5.7 Hz), 2.70-2.76 (4 H, m), 1.88-1.70 (4 

H, m); 13C NMR (75 MHZ CDCl3) = 23.4, 54.6, 56.2, 67.8, 117.4, 121.0, 124.6, 126.2, 127.4, 

129.4, 131.1, 133.4, 134.6, 146.1, 146.6, 157.6, 183.8; ESMS (m/z): 361 (M+H)+; Anal. Calcd 

for C21H20N4O2: C, 69.98; H, 5.59; N, 15.55. Found: C, 69.94; H, 5.54; N, 15.58. 

(E)-6-((3-chloropropoxy)methylene)indolo[2,1-b]quinazolin-12(6H)-one (5c) Faint white 

solid; mp= 1880C; 1H NMR (300 MHz, CDCl3) 8.68 (1 H, d, J = 8.3 Hz), 8.48 (1H, d, J = 7.4 

Hz), 8.27 (1H, d, J = 7.6 Hz) 7.99 (1H, d, J = 8.0 Hz), 7.84-7.78 (1 H, m), 7.76-7.56 (2 H, m), 

7.40(t, 1H, J= 7.7 Hz), 4.80 (2 H, t, J = 6.0 Hz), 3.75 (2 H, t, J = 6.4 Hz), 2.42-2.38 (2H, m); 
13C NMR (75 MHZ CDCl3) = 29.2, 41.4, 65.1, 117.1, 121.0, 124.6, 127.4, 127.1, 140.5, 130.8, 

133.8, 135.7, 144.1, 146.2, 157.9, 183.6; ESMS (m/z): 339 (M+H)+; Anal. Calcd for 

C19H15ClN2O2: C, 67.36; H, 4.46; N, 8.27. Found: C, 67.31; H, 4.42; N, 8.29. 

(E)-6-(2-(diisopropylamino)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5d) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.61 (1 H, d, J = 8.0 Hz), 8.48 (1H, d, J = 7.9 Hz), 

8.37 (1H, d, J = 7.5Hz), 7.98 (1H, d, J = 7.86 Hz), 7.86-7.75 (1H, t, J = 6.8 Hz), 7.60 (2H, q, J 

= 7.4 Hz), 7.41 (1 H, t, J = 7.5 Hz), 4.60 (2 H, t, J = 6.7 Hz), 3.12-3.67(2 H, m), 2.96 (2H, t, J 

= 6.6 Hz), 1.07(s, 1H), 1.05(s, 1H); 13C NMR (75 MHZ CDCl3) = 21.8, 41.6, 52.1, 64.8, 117.4, 

121.1, 124.6, 127.2, 127.1, 129.5, 130.8, 133.8, 135.7, 144.1, 146.2, 157.9, 183.6; ESMS (m/z): 

391 (M+H)+; Anal. Calcd for C23H26N4O2: C, 70.75; H, 6.71; N, 14.35. Found: C, 70.71; H, 

6.68; N, 14.38. 

(E)-6-(2-(dimethylamino)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5e) viscous 

oil; 1H NMR (300 MHz, CDCl3) 8.71 (1 H, d, J = 8.3 Hz), 8.62 (1H, d, J = 8.0 Hz), 8.33 (1H, 

d, J = 7.6 Hz), 8.00 (1H, d, J = 7.1 Hz), 7.84-7.61 (1 H, m), 7.61-7.56 (2 H, m), 7.40 (1 H, t, J 

= 6.9 Hz), 4.76 (2 H, t, J = 5.8 Hz), 2.89 (2 H, t, J = 5.7 Hz), 2.41(6H, s); 13C NMR (75 MHZ 

CDCl3) = 44.2, 56.2, 68.8, 117.3, 121.0, 124.6, 126.9, 127.1, 129.5, 130.6, 133.8, 134.7, 

144.1, 146.2, 157.1, 183.4; ESMS (m/z): 335 (M+H)+; Anal. Calcd for C19H18N4O2: C, 68.25; 

H, 5.43; N, 16.76. Found: C, 68.21; H, 5.40; N, 16.79. 

(E)-8-chloro-6-(2-(piperidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5f) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.62 (1 H, d, J = 7.4 Hz), 8.46 (1H, d, J = 7.8 Hz), 

8.33 (1H, s), 7.96 (1H, d, J = 8.0 Hz), 7.62-7.56 (2 H, m), 7.37 (1 H, t, J = 7.58 Hz), 4.75 (2 H, 

t, J = 7.6 Hz), 2.90 (2 H, t, J = 5.8 Hz), 2.53 (4H, t, J = 5.4 Hz), 1.77-1.54 (m, 4H), 1.44-1.46 

(2H, m); 13C NMR (75 MHZ CDCl3) = 23.2, 26.4, 54.3, 56.8, 68.6, 116.8, 121.7, 124.2, 124.4, 

127.2, 127.6, 128.1, 130.4, 133.2, 133.6, 140.9, 146.4, 148.2, 152.6, 151.2, 188.4; ESMS (m/z): 
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409 (M+H)+; Anal. Calcd for C22H21ClN4O2: C, 64.62; H, 5.18; N, 13.70. Found: C, 64.58; H, 

5.14; N, 13.73. 

(E)-8-chloro-6-(2-(pyrrolidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5g) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.52 (1 H, d, J = 8.1 Hz), 8.48 (1H, d, J = 7.4 Hz), 

8.09 (1H, d, J = 7.3 Hz), 7.96-7.84 (2H, m), 7.81-7.75 (2H, m), 4.83 (2 H, t, J = 5.6 Hz), 3.15 

(2 H, t, J = 5.4 Hz), 2.71-2.75 (4 H, m), 1.86-1.70 (4 H, m); 13C NMR (75 MHZ CDCl3) = 

25.3, 55.6, 58.2, 68.4, 116.2, 121.6, 124.2, 124.3, 127.2, 127.4, 128.1, 130.3, 133.2, 133.4, 

140.9, 146.3, 148.2, 152.5, 151.2, 188.5; ESMS (m/z): 395 (M+H)+; Anal. Calcd for 

C21H19ClN4O2: C, 63.88; H, 4.85; N, 14.19. Found: C, 63.84; H, 4.81; N, 14.22. 

(E)-8-chloro-6-((3-chloropropoxy)methylene)indolo[2,1-b]quinazolin-12(6H)-one (5h) 

White solid; mp= 1790C; 1H NMR (300 MHz, CDCl3) 8.63 (1 H, d, J = 8.3 Hz), 8.48 (1H, d, J 

= 7.4 Hz), 8.27 (1H, d, J = 7.6 Hz) 7.99 (1H, d, J = 8.0 Hz), 7.84-7.78 (1 H, m), 7.76-7.56 (2 

H, m), 4.81 (2 H, t, J = 6.0 Hz), 3.75 (2 H, t, J = 6.4 Hz), 2.41-2.38 (2H, m); 13C NMR (75 

MHZ CDCl3) = 29.4, 40.2, 64.6, 116.5, 121.8, 123.5, 124.9, 127.6, 127.9, 128.3, 130.0, 133.9, 

134.4, 141.3, 146.5, 148.6, 152.7, 151.6, 188.4; ESMS (m/z): 373 (M+H)+; Anal. Calcd for 

C19H14Cl2N2O2: C, 61.14; H, 3.78; N, 7.51. Found: C, 61.10; H, 3.75; N, 7.55. 

(E)-8-chloro-6-(2-(diisopropylamino)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one 

(5i) viscous oil; 1H NMR (300 MHz, CDCl3) 8.63 (1 H, d, J = 7.8 Hz), 8.51 (1H, d, J = 7.9 Hz), 

8.17 (1H, d, J = 7.6Hz), 7.90-7.77 (2H, m), 7.60-7.41 (2H, m), 4.61 (2 H, t, J = 6.7 Hz), 3.13-

3.67(2 H, m), 2.96 (2H, t, J = 6.6 Hz), 1.07(s, 1H), 1.05(s, 1H). 13C NMR (75 MHZ CDCl3) = 

21.4, 40.2, 50.3, 64.4, 116.8, 122.1, 124.0, 124.5, 127.2, 127.8, 128.1, 130.2, 133.6, 134.1, 

141.2, 146.4, 148.6, 152.4, 151.2, 188.2; ESMS (m/z): 425 (M+H)+; Anal. Calcd for 

C23H25ClN4O2: C, 65.01; H, 5.93; N, 13.19. Found: C, 65.00; H, 5.89; N, 13.22 

(E)-8-chloro-6-(2-(dimethylamino)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5j) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.68 (1 H, d, J = 8.3 Hz), 8.54 (1H, d, J = 8.0 Hz), 

8.21 (1H, d, J = 7.6 Hz), 7.90-7.77 (2H, m), 7.81-7.76 (2 H, m), 4.74 (2 H, t, J = 5.8 Hz), 2.84 

(2 H, t, J = 5.7 Hz), 2.40(6H, s). 13C NMR (75 MHZ CDCl3) = 44.2, 58.4, 66.6, 116.6, 121.8, 

124.1, 124.3, 127.0, 127.8, 128.1, 130.4, 133.2, 133.8, 140.9, 146.8, 148.6, 152.4, 151.2, 188.6; 

ESMS (m/z): 369 (M+H)+; Anal. Calcd for C19H17ClN4O2: C, 61.87; H, 4.65; N, 15.19. Found: 

C, 61.84; H, 4.61; N, 15.22. 

(E)-8-nitro-6-(2-(piperidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5k) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.64-8.58 (2 H, m), 8.54 (1H, s), 8.38 (1H, d, J = 7.3 

Hz), 7.82 (1H, d, J = 7.1 Hz), 7.74-7.69 (1 H, m), 7.64-7.52 (2 H, m), 7.38 (1 H, t, J = 7.58 Hz), 

4.74 (2 H, t, J = 7.6 Hz), 2.86(2 H, t, J = 5.8 Hz), 2.55-2.48 (4H, m), 1.75-1.56 (m, 4H), 1.46-

1.44 (2H, m); 13C NMR (75 MHZ CDCl3) = 24.1, 25.8, 54.5, 56.9, 68.4, 116.5, 121.2, 120.8, 

124.1, 126.4, 132.3, 133.4, 146.4, 147.1, 154.3, 160.6, 186.4; ESMS (m/z): 420 (M+H)+; Anal. 

Calcd for C22H21ClN5O4: C, 63.00; H, 5.05; N, 16.70. Found: C, 62.96; H, 5.01; N, 16.73. 

(E)-8-nitro-6-(2-(pyrrolidin-1-yl)ethoxyimino)indolo[2,1-b]quinazolin-12(6H)-one (5l) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.29-8.23 (2H, m), 8.10 (1H, s), 7.81 (1H, d, J = 7.5 

Hz), 7.53-7.41 (2H, m), 7.34-7.21 (1 H, m), 4.84 (2 H, t, J = 5.7 Hz), 3.12 (2 H, t, J = 5.7 Hz), 

2.71-2.75 (4 H, m), 1.88-1.71(4 H, m); 13C NMR (75 MHZ CDCl3) = 24.7, 55.2, 56.2, 68.2, 

115.8, 121.3, 120.8, 124.1, 126.3, 132.3, 133.4, 146.5, 147.1, 154.1, 160.6, 186.2; ESMS (m/z): 
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406 (M+H)+; Anal. Calcd for C21H19N5O4: C, 62.22; H, 4.72; N, 17.27. Found: C, 62.18; H, 

4.69; N, 17.30. 

 (E)-6-(2-(dimethylamino)ethoxyimino)-8-nitroindolo[2,1-b]quinazolin-12(6H)-one (5n) 

viscous oil; 1H NMR (300 MHz, CDCl3) 8.35-8.29 (2H, m), 8.18 (1H, s), 8.02 (1H, d, J = 7.4 

Hz), 7.63-7.51 (2H, m), 7.44-7.36 (2 H, m), 4.75 (2 H, t, J = 5.8 Hz), 2.85 (2 H, t, J = 5.7 Hz), 

2.41(6H, s); 13C NMR (75 MHZ CDCl3) = 43.6, 58.2, 68.6, 116.1, 120.5, 121.8, 124.4, 126.4, 

132.2, 133.8, 146.4, 147.2, 154.3, 160.4, 186.1; ESMS (m/z): 380 (M+H)+; Anal. Calcd for 

C19H17N5O4: C, 60.15; H, 4.52; N, 18.46. Found: C, 60.11; H, 4.47; N, 18.49. 

(E)-6-(2-(diisopropylamino)ethoxyimino)-8-nitroindolo[2,1-b]quinazolin-12(6H)-one 

(5o) viscous oil; 1H NMR (300 MHz, CDCl3) 8.56-8.47 (2 H, m), 8.24 (1H, s), 7.81-7.74 (2H, 

m), 7.60-7.48 (2H, m), 4.61 (2 H, t, J = 6.7 Hz), 3.13-3.67(2 H, m), 2.96 (2H, t, J = 6.6 Hz), 

1.07(s, 1H), 1.05(s, 1H); 13C NMR (75 MHZ CDCl3) = 21.8, 41.6, 51.8, 64.6, 116.8, 120.2, 

121.6, 124.4, 127.4, 132.4, 133.8, 145.4, 146.2, 154.3, 161.4, 186.3; ESMS (m/z): 436 (M+H)+; 

Anal. Calcd for C23H25N5O4: C, 63.44; H, 5.79; N, 16.08. Found: C, 63.40; H, 5.74; N, 16.11. 

Result and discussion 

Our research interest in area of Natural Product Inspired synthesis motivated us to work to 

develop pharmacologically active analogues of Tryptanthrins. Earlier we reported the first 

green synthesis of Tryptanthrin derivatives from Isatoic Anhydride and Isatins. The Starting 

point of our work was to synthesizethree substituted Tryptanthrin analogues (3a-c). 

Tryptanthrins (3a-c) were synthesized by our earlier reported procedure, using commercially 

available substituted isatins and isatoic anhydride in water. β-cyclodextrin was employed as 

catalyst in aqueous medium. Tryptanthrins (3a-c) were isolated in excellent yields (up to 90%) 

and negligible chromatographic purification was required at this stage. Then we tried to convert 

the ketonic group of tryptanthrin in oxime functionality and achieved this reacting 

Tryptanthrins with hydroxylamine hydrochloride using KOH pallets as base in (scheme 1).  

 

 

Scheme 1: Synthesis of tryptanthrin derivatives. Reagent and condition: a) β-cyclodextrin, 

water, stirring, RT. b) toluene, hydroxylamine hydrochloride, refluxing, 12 hrs. c) dry acetone, 

K2CO3, aminoalkyl chain, refluxing.  

Corresponding oxime derivatives were isolated in excellent yield (4a-c upto 92%). Formation 

of oxime analogue was confirmed by IR, 1H and 13C NMR spectroscopy. Tryptanthrin oxime 
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derivatives were precipitated in reaction medium and separated by filteration and purified by 

washing with water and ethanol. No chromatographic purification was required at this stage.  

 

Figure 1. Synthesized Tryptanthrin Aminoalkyl Derivatives. 

Next strategy was to attach pharmacophoric aminoalkyl side chains in selected natural product 

scaffold. To achieve this hydroxyl group of oxime derivative was alkylated with various 

aminoalkyl chains using a strong base as sodium hydride in DMF. Thin Layer Chromatography 

in silica was used to check the progress of reaction. Surprisingly we observed that derivative 

with nitro substitution on Tryptanthrin nucleus having poor solubity and probably due to this 

reason the isolated yields of products (5k-l) were low. The alkylated Tryptanthrin derivatives 

were isolated as oily products. Compounds (5a-o) were formed in good to excellent yields and 

all the synthesized aminoalkyl derivatives were characterized by IR, 1H and 13C NMR 

spectroscopy, mass spectroscopy and elemental analysis. These aminoalkyl derivatives were 

further evaluated for their pharmacological activity.  

Conclusion 

In conclusion, we have synthesized a series of aminoalkylchain substituted analogues of natural 

product tryptanthrin in excellent yields. These compounds were evaluated against P. 

Falciparum in both sensitive 3D7 and resistant pf k1 strain. Most of the compounds among 

compounds synthesized showed significant antimalarial at low nanomolar level. Our results 

reveal that our synthesized natural product derived analogues are more potent antimalarial 

agents than the parent natural product scaffold. Thus our findings open up new doors towards 

the antimalarial chemotherapy which can be helpful for the discovery of new therapeutics 

against malaria in near future. We have also shown cytotoxicity as well as selectivity of 

synthesized compounds which shows that our stnthesized compounds are more selective and 

very low toxic. Further in vivo exploration of this study is currently underway. 
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